[2 PTS] Find the vertex and axis of symmetry of
$$f(x) = \frac{1}{4}x^2 - 2x - 12$$
.

$$X = -\frac{b}{2a} = -\frac{-2}{2(4)} = 4$$

$$f(4) = \frac{1}{4}(4)^2 - \frac{2}{4}(4) - 12 = -16$$

axis: $\times = 4$

The graph of $f(x) = x^2$ is shown below with the points (1, 1) and (-1, 1) highlighted.

On the same grid, sketch the graph of $f(x) = x^4$.

The graph of $f(x) = x^5$ is shown below with the points (1, 1) and (-1, -1) highlighted. On the same grid, sketch the graph of $f(x) = x^3$.

[4 PTS] (x-5) and (x+4) are factors of $f(x) = x^4 - 4x^3 - 15x^2 + 58x - 40$. Using that information and synthetic division, find all real zeros of f.

$$x^2-3x+2=0$$

(x-1)(x-2)=0-x=1.2

[2 PTS] Write the vertex form of the equation of the quadratic function that has vertex (-3, 5) ANSWER:

and whose graph passes through the point
$$(-1, 2)$$
.
 $f(x) = a(x-3)^2 + 5 = a(x+3)^2 + 5$
 $f(-1) = a(-1+3)^2 + 5 = 4a+5=2$
 $a = -\frac{3}{4}$

$$f(x) = -\frac{3}{4}(x+3)^2+5$$

lecture. ANSWER:

BEHAVIOR

AT
$$x=-3$$
 \bigcirc
 $x=0$ \bigcirc
 $x=2$ \bigcirc

An $x=-3$ \bigcirc

LEADING TERM -X8

ANY OTHER ZEROS WRONG LONG RUN NOT SMOOTH + CONTINUOUS ANSWER: $2x-8+\frac{x-1}{x^2+1}$

[3 PTS] Divide
$$f(x) = 3x + 2x^3 - 9 - 8x^2$$
 by $d(x) = x^2 + 1$.

Write your final answer in the form $q(x) + \frac{r(x)}{d(x)}$.

$$\begin{array}{r} x^{2} + 1) 2x^{3} - 8 \\ 2x^{3} - 8x^{2} + 3x - 9 \\ 2x^{3} + 2x \\ \hline -8x^{2} + x - 9 \\ -8x^{2} - 8 \\ \hline x - 1 \end{array}$$

[4 PTS] A rancher has 84 feet of fencing to enclose two adjacent rectangular corrals (see figure on the right).

[a] Write the total (combined) enclosed area of the corrals as a function of x. (Your final answer must \underline{NOT} involve y.)

$$2 \times y$$
 $4 \times + 3 y = 84$
 $y = 28 - \frac{4}{5} \times$

$$A = 2x(28 - \frac{4}{3}x) = 56x - \frac{8}{3}x^2$$

Find the dimensions of each corral [b] that will produce the maximum enclosed area. ANSWER: $X = \frac{1}{2}$, $y = \frac{1}{4}$

ANSWER:

VERTEX
$$X = -\frac{b}{2a} = -\frac{56}{2(-\frac{a}{3})} = 56 \cdot \frac{3}{16} = \frac{21}{2}$$

$$Y = 28 - \frac{4}{3}(\frac{21}{3}) = 14$$